Tháng Năm 19, 2024

Tìm các hằng số a và b sao cho \(\left( {{x^3} + ax + b} \right):\left( {x + 1} \right)\) dư 7 và \(\left( {{x^3} + ax + b} \right):\left( {x – 3} \right)\) dư (- 5)

Tìm các hằng số a và b sao cho \(\left( {{x^3} + ax + b} \right):\left( {x + 1} \right)\) dư 7 và \(\left( {{x^3} + ax + b} \right):\left( {x – 3} \right)\) dư (- 5)

A. a = -10; b = 2

B. a = -10; b = – 2

C. a = 10; b = 2

D. a = -10; b = 3

Hướng dẫn Chọn đáp án là: B

Phương pháp giải:

– Đặt phép chia.

– Để phép chia có dư theo điều kiện đề bài thì số dư cuối cùng phải bằng số dư đề bài cho. Từ đó ta được phương trình thứ nhất.

– Thực hiện tương tự, được phương trình thứ hai. Lập hệ phương trình, giải hệ thu được giá trị của a và b.

Lời giải chi tiết:

Để \({x^3} + ax + b\) chia cho x + 1 dư 7 thì \(b – a – 1 = 7 \Leftrightarrow – a + b = 8\;(1)\)

Để \({x^3} + ax + b\) chia cho x – 3 dư – 5 thì \(b + 3a + 27 = -5 \Leftrightarrow 3a + b = – 32\;(2)\)

Từ (1) và (2) ta có hệ \(\left\{ \matrix{- a + b = 8 \hfill \cr 3a + b = – 32 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{a = – 10 \hfill \cr b = – 2 \hfill \cr} \right.\)