Tháng Năm 19, 2024

Tam giác vuông cân có độ dài đường trung tuyến ứng với cạnh huyền bằng \(\sqrt 2 \,cm\) thì độ dài cạnh góc vuông của tam giác đó bằng:….

Tam giác vuông cân có độ dài đường trung tuyến ứng với cạnh huyền bằng \(\sqrt 2 \,cm\) thì độ dài cạnh góc vuông của tam giác đó bằng:….

A. \(2cm\)

B. \(1cm\)

C. \(\sqrt {\frac{3}{2}} cm\)

D. \(\frac{3}{2}cm\)

Hướng dẫn Chọn đáp án là: A

Phương pháp giải:

Áp dụng tích chất của tam giác vuông cân và định lý Py-ta-go.

Lời giải chi tiết:

Cho \(\Delta ABC\) vuông cân tại \(A\), có \(A{\rm{D}}\) là đường trung tuyến, \(A{\rm{D}} = \sqrt 2 \,cm\).

Vì \(\Delta ABC\) vuông cân tại \(A\), có \(A{\rm{D}}\) là đường trung tuyến (gt)

\( \Rightarrow BC = 2{\rm{AD}} = 2\sqrt 2 \,cm\) (trong tam giác vuông đường trung

tuyến ứng với cạnh huyền bằng nửa cạnh ấy)

Áp dụng định lý Py-ta-go có:

\(\begin{array}{l}A{B^2} + A{C^2} = B{C^2} \Rightarrow 2{\rm{A}}{B^2} = B{C^2}\\ \Rightarrow A{B^2} = {\left( {2\sqrt 2 } \right)^2}:2 = 4\, \Rightarrow AB = AC = 2\,cm.\end{array}\)

Chọn A