Tháng Năm 19, 2024

Cho biểu thức: \( C = {1 \over {\sqrt x + \sqrt {x – 1} }} – {1 \over {\sqrt x – \sqrt {x – 1} }} – {{x\sqrt x – x} \over {1 – \sqrt x }} \). a) Tìm tập xác định của C. b) Rút gọn biểu thức C. A a) \( x \geq 1\) b) \(C=x-2\sqrt{x-1}\). B a) \( x \geq 1\) b) \(C=x+2\sqrt{x-1}\). C a) \( x >1\) b) \(C=x+2\sqrt{x-1}\). D a) \( x >1\) b) \(C=x-2\sqrt{x-1}\).

Cho biểu thức: \( C = {1 \over {\sqrt x + \sqrt {x – 1} }} – {1 \over {\sqrt x – \sqrt {x – 1} }} – {{x\sqrt x – x} \over {1 – \sqrt x }} \).

a) Tìm tập xác định của C.

b) Rút gọn biểu thức C.

A a) \( x \geq 1\)

b) \(C=x-2\sqrt{x-1}\).

B a) \( x \geq 1\)

b) \(C=x+2\sqrt{x-1}\).

C a) \( x >1\)

b) \(C=x+2\sqrt{x-1}\).

D a) \( x >1\)

b) \(C=x-2\sqrt{x-1}\).

Hướng dẫn Chọn đáp án là: D

Lời giải chi tiết:

a) Hàm số xác định \( \Leftrightarrow \left\{ \matrix{ x \ge 0 \hfill \cr x – 1 \ge 0 \hfill \cr \sqrt x + \sqrt {x – 1} \ne 0 \hfill \cr \sqrt x – \sqrt {x – 1} \ne 0 \hfill \cr 1 – \sqrt x \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{x \ge 0 \hfill \cr x \ge 1 \hfill \cr \forall x \ge 1 \hfill \cr \sqrt x \ne \sqrt {x – 1} \hfill \cr \sqrt x \ne 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr x \ne x – 1 \hfill \cr x \ne 1 \hfill \cr} \right. \Leftrightarrow x > 1. \)

b) Ta có: \( \left( {\sqrt x + \sqrt {x – 1} } \right)\left( {\sqrt x – \sqrt {x – 1} } \right) = {\left( {\sqrt x } \right)^2} – {\left( {\sqrt {x – 1} } \right)^2} = x – \left( {x – 1} \right) = 1.\)

\( \eqalign{& C = {1 \over {\sqrt x + \sqrt {x – 1} }} – {1 \over {\sqrt x – \sqrt {x – 1} }} – {{x\sqrt x – x} \over {1 – \sqrt x }} \cr & \,\,\,\,\, = {{\sqrt x – \sqrt {x – 1} – \left( {\sqrt x + \sqrt {x – 1} } \right)} \over {\left( {\sqrt x + \sqrt {x – 1} } \right)\left( {\sqrt x – \sqrt {x – 1} } \right)}} – {{x\left( {\sqrt x – 1} \right)} \over {1 – \sqrt x }} \cr & \,\,\,\,\, = {{\sqrt x – \sqrt {x – 1} – \sqrt x – \sqrt {x – 1} } \over 1} + x\, = x – 2\sqrt {x – 1} . \cr} \)

Chọn D.